鸿奥智库

展厅多媒体百科、互动投影百科、行业动态、鸿奥观点。

首页 > 产品百科 > 数字孪生 > 大数据可视化的实施

大数据可视化的实施

更新时间:2022-08-17 05:08:00

  大数据可视化的实施是一系列数据的转换过程,如下图所示:
 

 
  我们有原始数据,通过对原始数据进行标准化、结构化的处理,把它们整理成数据表。将这些数值转换成视觉结构(包括形状、位置、尺寸、值、方向、色彩、纹理等),通过视觉的方式把它表现出来。例如将高中低的风险转换成红黄蓝等色彩,数值转换成大小。将视觉结构进行组合,把它转换成图形传递给用户,用户通过人机交互的方式进行反向转换,去更好地了解数据背后有什么问题和规律。
 
  从技术上来说,大数据可视化的实施步骤主要有四项:需求分析,建设数据仓库/数据集市模型,数据抽取、清洗、转换、加载(ETL),建立可视化分析场景。
  1、需求分析
  需求分析是大数据可视化项目开展的前提,要描述项目背景与目的、业务目标、业务范围、业务需求和功能需求等内容,明确实施单位对可视化的期望和需求。包括需要分析的主题、各主题可能查看的角度、需要发泄企业各方面的规律、用户的需求等内容。
 
  2、建设数据仓库/数据集市的模型
  数据仓库的模型是在需求分析的基础上建立起来的。数据仓库建模除了数据库的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。
  维度建模的关键在于明确下面四个问题:
  哪些维度对主题分析有用?如何使用现有数据生成维表?用什么指标来"度量"主题?如何使用现有数据生成事实表?
 
  3、数据抽取、清洗、转换、加载(ETL)
  数据抽取是指将数据仓库需要的数据从各个业务系统中抽离出来,因为每个业务系统的数据质量不同,所以要对每个数据源建立不同的抽取程序,每个数据抽取流程都需要使用接口将元数据传送到清洗和转换阶段。
  数据清洗的目的是保证抽取的原数据的质量符合数据仓库的要求并保持数据的一致性。数据转换是整个ETL过程的核心部分,主要是对原数据进行计算和放大。数据加载是按照数据仓库模型中各个实体之间的关系将数据加载到目标表中。
 
  4、建立可视化场景
  建立可视化场景是对数据仓库中的数据进行分析处理的成果,用户能够借此从多个角度查看企业的运营状况,按照不同的主题和方式探查企业业务内容的核心数据,从而作出更精准的预测和判断。